Evaluation of all-transparent optical routers for a quantum network embedded in a classical optical fiber network
This project aims to establish the hardware necessary to implement a dial-up transparent optical network for quantum communication riding on the existing fiber network in Singapore.
The core part of this project is to develop optical multiplexers that can bypass classical Internet routing hardware, and provide a reconfigurable optical routing on a spectral window that is not used for classical traffic. The main challenge was to identify and characterize the switching technology suitable for quantum traffic. A key requirement is that insertion loss should be minimal, and quantum states encoded in single photons need to be preserved. Switching times should be short compared to typical run times of quantum communication sessions, which last on a minute to hour time scale.
The project identifies a few switching technologies, and implements network-compatible devices with a simple software interface, and for different routing topologies.
Lead PI: Christian Kurtsiefer, NUS